

What role can the systems approach play in preventing the introduction of invasive alien species?

Hugh Evans¹, Eckehard Brokerhoff², Richard Baker³ and René Eschen⁴

¹Forest Research, Aberystwyth, UK, ²Scion, Christchurch, New Zealand, ³Fera, York, UK ⁴CABI, Delemont, Switzerland

- Management of phytosanitary threats is generally pest list-based or commodity-based
- In the European Union this is regulated through the EU Plant Health Directive (2000/29/EC)
- Further lists are provided by the European & Mediterranean Plant Protection Organisation (EPPO)
- Similar approaches are adopted globally, e.g. Canada
- Some examples of listed forest pests follow:

European Union	N	Named pests		
Directive 2000/29 EC	Forest	Other	Total	
Insects & nematodes	17	88	105	
Bacteria	0	8	8	
Fungi	16	21	37	
Viruses	1	47	48	
	34	164	198	

Canada	Forest	Other	Total
Bacteria	1	7	8
Fungi	7	31	38
Insects & mites	14	46	60
Molluscs	0	11	11
Nematodes	0	9	9
Phytoplasmas	0	10	10
Viruses	0	62	62
	22	176	198

EPPO A1 & A2 lists

342 of which 135 are insects

Each country will have its own list but probably broadly similar in the temperate forest sector

Based on Evans, H. F. Pest risk analysis - organisms or pathways? *New Zealand Journal of Forestry Science* 40 suppl. (2010) S35-S44

Crown copyright

Most organisms are missed!

Successful establishment of pests, including those not on lists

	Total Inverts	Arthropods	Non-arthropods		
Africa	12.3	12.9	3.2		
North America	19.8	19.6	22.6		
C & S America	10.8	10.9	9.7		
Asia	29.4	29.3	32.3		
Australasia	6.5	6.6	4.3		
Tropics	6.7	7.1	1.1		
Cryptogenic	14.5	13.7	26.9		
Total (number)	1517 (135*)	1424	93		

% of invertebrate sps established in Europe (from Roques, et al. 2008)

EPPO lists

- Successful establishment of major pests not on lists before arrival in receiving country
 - Anoplophora glabripennis: USA, several EU countries.
 From Asia
 - Agrilus planipennis: USA, Russia. From Asia
 - *Megaplatypus mutatus*: Italy. From S America
 - Dryocosmus kuriphilus: USA, parts of EU. From Asia
 - *Phytophthora ramorum*: USA, EU. Origin unknown
 - *Phytophthora kernoviae*: EU, NZ. Origin unknown
 - Etc.
 - Etc.

The need for measures to reduce phytosanitary risks

- The need for measures to manage risks from pests is driven by a balance between:
 - Recognition of a threat, usually (ideally) by prior recognition and supported by formal Pest Risk Analysis
 - Determining whether that threat is severe enough to require application of measures so that trade in the pathway carrying the pest can continue
- Globally, measures are determined through consensus and, particularly, bilateral agreement with the receiving country predominant.

- Range of measures and feasibility of use is driven by the pathway and type of pest on the pathway:
 - Non-living material: all direct measures (e.g. heat, fumigation) can be considered and used
 - Living material: direct measures restricted and also dependent on type of pest
- Both types of pathway are potentially manageable by a Systems Approach, but particularly relevant to living material

est Research

Some key elements of a Systems Approach to Risk Reduction

Effect o listed pest

Pest prevalence and reduction by process

he symems approach

ueal, with

Effect on non-listed pest(s)

Reduce pest at place of production

Reduce pest in transit

Reduce pest at import point(s)

Systems approaches may be considered when one or more of the following circumstances apply:

•individual measures are:

- not adequate to meet phytosanitary import requirements
- not available (or likely to become unavailable)
- detrimental (to commodity, human health, environment)
- not cost effective
- overly trade restrictive
- not feasible

•the pest and pest-host relationship is well known

Systems approaches may be considered when one or more of the following circumstances apply (Cont'd):

- a systems approach has been demonstrated to be effective for a similar pest/commodity situation
- there is the possibility to assess the effectiveness of individual measures either qualitatively or quantitatively
- relevant growing, harvesting, packing, transportation and distribution practices are well-known and standardized
- individual measures can be monitored and corrected
- prevalence of the pest(s) is known and can be monitored
- a systems approach is cost effective (e.g. considering the value and/or volume of commodity).

- Measures can and should be applied sequentially, with greatest emphasis on pest reduction or removal as close to the start of the pathway as possible.
- Measures can be independent or used additively as a combination of measures.

Steps in the Systems Approach (based on EPPO PRA system)

Example: Anoplophora chinensis mitigation measures per pathway: EU requirements

Miniature plants, Bonsai or Penjing

Plants for planting, e.g. Acer

Crown copyright

www.forestry.gov.uk/forestresearch

Pathway

Order of pest

Acer

Insects

Coleoptera Cerambycidae

Hemiptera Aphididae Cicadellidae Diaspididae Hymenoptera Eurytomidae Thysanoptera

Thripidae Nematodes

Hosts of A. chinensis as pathways regulated by the EU

Acer spp. – the most common pathway: 57 potential pest genera intercepted

All listed pathway genera: a further 97 genera/species intercepted

Number of		Genus	No. of species intercepted
intercepted		Acer	. 57
57	← 30 Anoplophora	Aesculus	1
		Alnus	1
13		Betula	5
6	EU Directive: Specified plants:	Carpinus	4
6	Acer spp., Aesculus	Citrus	11
5	hippocastanum, Alnus spp.,	Cornus	4
1	Betula spp., Carpinus spp.,	Corylus	1
2	Citrus spp., Cornus spp.,	Cotoneaster	1
1	Corylus spp., Cotoneaster spp.,	Crataegus	1
1	Crataegus spp., Fagus spp.,	Fagus	4
1	Lagerstroemia spp., Malus	Lagerstroemia	11
1	spp., Platanus spp., Populus	Malus	5
44	spp., Prunus laurocerasus,	Platanus	1
	Pyrus spp., Rosa spp., Salix	Populus	1
	spp. and <i>Ulmus</i> spp.;	Prunus	9
		Pyrus	3
		Rosa	13
Interceptions data 1995-2010		Salix	1

Source: EPPO Interce

www.forestry.gov.uk/forestresearch

20

Ulmus

- Our current, and difficult, challenge is how to manage the complexity and pest-carrying capacity of Plants for Planting as a pathway
- A process-based approach using exemplar pests with particular biological attributes should now be used; it is not the name of the pest that matters, it is how it is associated with the pathway that counts
- The process is to remove/prevent the exemplar pest association leading to successful application of the manage once remove many concept
- Worked examples of the positive and negative aspects of the Systems Approach would be valuable in developing a process to cope with both known and unknown pests

Hugh Evans would like to acknowledge:

 The organisers for their generous support

 Funding from the European Union's Seventh Framework Programme FP7/2007-2013 under grant agreement number 265483 (REPHRAME project)

Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Confederaziun svizra René Eschen would like to acknowledge:
The Swiss Secretariat for Education and Research (SER)

Thank you for your attention!

www.forestry.gov.uk/forestresearch